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DEFINITION OF SYMBOLS 

Definition 

Relative quantization error for the derivative of the frequency 
component ( f 

Average quantization error for 
component ( f ) 

Average quantization error for 

Average quantization error for 

Frequency 

Lower frequency 

Upper frequency 

Integer of the quantity in the 

(2m+l) representing the number 
sample reduction method 

Number of quantization bits in 

Total number of scale units in 

Cross -c orrela tion be tween x ( t ) 

Spectral density function 

Time 

Increment in time 

Time history 

the derivative of the frequency 

atmospheric crossed-beam data 

band-limited white noise 

parentheses 

of digital samples used in the 

a digital converter 

a digital converter 

and y(t) 

Frequency component of x( t) with frequency f 

An equivalent to x(t,f) defined by equation (22) 

An estimated value of x(t,fu) by the sample reduction method 
using (2m+l) sarcples 

Time history x(t) measured in scale units 

Time history 
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Gree,k Symbols 

0 

Defin i t ion  

Average percentage of ove ra l l  teduct ion of quant izat ion e r r o r  
using (2m+l) samples f o r  any spectral dens i ty  s ( f )  

Same as f o r  E(m) except f o r  frequency component (f ) 

The minimum percentage of reduct ion of quant izatfon e r r o r  
f o r  frequency component f using (2mi-1) samples. 

Angle between x(t; f ) and the  absc issa  

nus of quant izat ion e r r o r  i n  x(t )  

U 

U 

U 

mean of quant izat ion e r r o r  i n  %(t) 

V 
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Section I 

INTRODUCTION 

Quantization e r r o r s  occur i n  the  process of converting a continuous analog 

t i m e  h i s to ry  t o  a d i s c r e t e  d i g i t a l  t i m e  h i s to ry  by an e l ec t ron ic  device. 

f a c t o r s  cause quant izat ion e r ro r s .  

devices which read the  analog t i m e  h i s to ry  and subsequently process the  sample 

i n t o  d i g i t a l  form. 

that: we have an  i d e a l  analog-to-digital  converter with respect t o  the  e l ec t ron ic s .  

The second f ac to r  is  the  f i n i t e  s i z e  of the scale u n i t  which is pre-fixed as the  

Smallest increment f o r  recording d i g i t a l  samples. The problem of f i n i t e  s i z e  of 

a s c a l e  u n i t  is usua l ly  a t tacked by making t h e  scale u n i t  as small as possible,  

i .e.,  increasing the number of d i g i t s  i n  quant izat ion.  This requi res  expensive 

equipment, and the  maximum number of d i g i t a l  b i t s  is  l imi ted  f o r  any d i g i t i z e r .  

Two 

The f i r s t  is  t h e  imperfection of e l ec t ron ic  

I n  t h i s  ana lys i s  w e  s h a l l  ignore t h i s  f ac to r  by assuming 

I n  the d i g i t a l  analysis’of  atmospheric crossed-beam da ta  f o r  remote 

wind speed and turbulence detect ion,  ( r e f .  l), it w a s  shown t h a t  the  s igna l  

t i m e  ( f i r s t )  de r iva t ives  r a t h e r  than the  s igna l s  themselves are needed f o r  

ca lcu la t ing  the  cross-correlat ion function. Furthermore, the  signal-to-noise 

r a t i o  of the crossed-beam da ta  is  usual ly  very low; say 0.3 or less (ref .  2 

and 3 ) .  

der iva t ives ,  which are evaluated by a f i n i t e  d i f fe rence  scheme, w i l l  be even 

smaller. 

by Bendat and P i e r s o l  ( r e f .  4 ) .  

It follows t h a t  the  signal-to-noise r a t i o  i n  the  signal-time 

The quant izat ion e r r o r  f o r  a d i g i t a l  t i m e  h i s to ry  has been discussed 

The purpose of t h i s  repor t  is two-fold. F i r s t ,  Section I1 presents  an  

estimate of the  quant izat ion e r r o r  f o r  t he  f i r s t  de r iva t ive  of d i g i t a l  t i m e  

h i s t o r i e s ,  which is  made based on t h e  r e s u l t s  i n  reference 4 .  

app l i ca t ion  t o  crossed-beam data w i l l  be given. 

t he  minimum required b i t s  of quant izat ion of t h e  time h i s to ry  can be determined. 

Secondly, we  s h a l l  d e a l  with the  problem concerning how t h e  quant izat ion e r r o r  

can be reduced f u r t h e r  without increasing the number of d i g i t a l  b i t s .  

so lu t ion  i s  t o  employ the  sample reduct ion method. 

A s p e c i f i c  

Based on t h i s  estimate, 

One 

Using sample reduct ion,  
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a given number, say m, of consecutive d i g i t a l  samples of a t i m e  h i s to ry  is 

added t o  form a new t i m e  h i s to ry  with only l / m  of t he  o r i g i n a l  number of 

d i g i t a l  samples .  I n  con t r a s t  with the usua l  c e n t r a l  moving average, t he  

sample reduct ion may be considered as a jumping average. 

I n  Section I11 w e  shall develop a t h e o r e t i c a l  b a s i s  and then e s t a b l i s h  

some practical cri teria f o r  employing the  sample reduction method t o  reduce 

quant izat ion e r r o r .  

2 
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Section I1 

QUANTIZATION ERRORS FROM 
ANALOG /D I G I  TAL CONVERSION 

In  t h i s  s ec t ion  we  shall dea l  mainly with the quant iza t ion  e r r o r  i n  the  

f i r s t  de r iva t ive  of t he  d i g i t a l  t i m e  h i s tory .  

w e  must  know the  quant iza t ion  e r r o r  i n  the  d i g i t a l  t i m e  h i s tory ,  s ince  the  

latter e r r o r  w i l l  be c a r r i e d  over t o  the  former. 

However, before  we  can do t h i s ,  

2 . 1  QUANTIZATION ERROR I N  THE DIGITAL TIME HISTORY 

Consider an  analog t i m e  h i s to ry  x ( t ) ,  which i s  p l o t t e d  i n  Figure 2-1, 

with t i m e  as the absc issa  and pref ixed scale u n i t s  as the  ordinate .  Now 

consider taking a d i g i t a l  sample  of the t i m e  h i s t o r y  a t  an a r b i t r a r y  t i m e  

t. 

the curve. 

consecutive scale u n i t s  ( j+ l )  and (j+2).  Hence, i t  i s  r eg i s t e red  by the  

d i g i t a l  converter  as having ( j+ l )  s c a l e  u n i t s .  The di f fe rence  between the  

exact  analog value 

ind ica ted  by the  segment AB, is  c a l l e d  the  quant iza t ion  e r r o r  (due t o  anj 

ana lQg /d ig i t a l  conversion).  

one-half s c a l e  u n i t .  

The exact  va lue  of the  sample is  indicated graphica l ly  by poin t  A on 

This po in t  happens t o  l i e  j u s t  below the  midpoint l i n e  between two 

and the  approximate, rounded d i g i t a l  va lue  E, as 

This e r r o r  may vary from zero t o  a maximum of 

Here w e  are i n t e r e s t e d  i n  random t i m e  h i s t o r i e s ,  so  the  mean and rms of 

the e r r o r  are of pr imary i n t e r e s t .  

t he  s t a t i s t i c a l  d i s t r i b u t i o n  of po in t  A must be known. 

i t  would seem s a f e  t o  assume t h a t  po in t  A w i l l  be found, with equal probabi l i ty ,  

between two consecutive scale u n i t s .  

t he  probabi l i ty  dens i ty  of the  t i m e  h i s t o r y  x ( t )  over any scale u n i t  i s  uniform. 

It is also r eca l l ed  t h a t  any poin t  lay ing  above (or  below) t h e  midpoint between 

twb scale u n i t s  is  considered t o  belong t o  the  upper (or  lower) scale un i t .  

These two s ta tements  can be expressed mathematically as 

To obta in  these  two average quan t i t i e s ,  

For most t i m e  h i s t o r i e s  

Thus, w e  s h a l l  make the  assumption t h a t  

-0.5 < x 5 0.5 scale u n i t  and Prob (x) = 1, - 
and Prob (x) = 0, otherwise 

3 
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With t h i s  probabi l i ty ,  the  mean value of t he  quant izat ion e r r o r  1-1 w i l l  be 
x, 9 

= J Prob (x) dx = 0 , 
vx,4 -m 

s ince  the probabi l i ty  densi ty  i s  symmetric about x = 0. The var iance i s  given 

by 

So, the  standard devia t ion  (or rms) of the  quant izat ion e r r o r  f o r  t h i s  d i g i t a l  

t i m e  h i s to ry  is  

0 = J j-j- 2 0.29 scale u n i t  
x, 4 (3) 

This might be considered as rms noise  added t o  the  t i m e  h i s to ry  during t h e  

ana log /d ig i t a l  conversion. 

2.2 QUANTIZATION ERROR FOR F I R S T  DERIVATIVE OF DIGITAL TIME HISTORY 
W e  s h a l l  now consider the e r r o r  i n  the  ca lcu la t ion  of t h e  f i r s t  de r iva t ive  

of the d i g i t a l  t i m e  h i s to ry  with the  presence of t he  rms quant izat ion e r r o r  

as given by equation ( 3 ) .  

Consider two consecutive sampling t i m e s ,  t and t + A t  (see Figure 2-2). 

L e t  t he  t i m e  i n t e r v a l  i n  t h e  data  sampling be A t .  

The rms quant izat ion e r r o r s  f o r  x ( t )  and x ( t  + At) w i l l  both be d = 0.29 
x, q 

s c a l e  un i t .  Without these  quant izat ion e r r o r s  t he  co r rec t  f i r s t  de r iva t ive  

(within the  accuracy of the 

With 

f i n i t e  difference)  would be given by 

x ( t  + At) - x ( t >  = & 
= (t + At) - t A t  cor  

the quant izat ion e r r o r s ,  t he  der iva t ive  would be,  i n  the  rms sense,  

( 4 )  

5 
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It i s  lbg ica l ,  then, t o  def ine  a measure f o r  r e l a t i v e  quant izat ion e r r o r  f o r  

the  d e r i v a t i v e  of t h e  t i m e  h i s tory  E as follows: 
I 

d 

Ed = 

u 
(::)*e - ( - )  cor  

That is, E d 
co r rec t  derivative of t he  t i m e  his tory.  

is the absolu te  value of the percentage e r r o r  with respect  t o  the  

Subs t i tu t ion  of equations ( 4 )  and (5) i n t o  (6) y i e l d s  

20 20 
=x,q=x_,qA 

cor 

Ed X 

S' L e t  the  t o t a l  number of s ca l e  u n i t s  of the  A/D converter be denoted by N 

Now convert t he  t i m e  h i s t o r y  x ( t )  t o  a new s igna l  xs ( t )  measured i n  scale 

un i t s ,  i .e . ,  

Clear ly ,  

With the  above transformation, equation (7) can be rewr i t ten  as 

(7) 

This shows t h a t  the  quant izat ion e r r o r  i s  inverse ly  proport ional  t o  the  

sampling i n t e r v a l  A t .  

e r ro r .  However, the maximum allowable sampling i n t e r v a l  i s  r e l a t e d  t o  

the upper cut-off frequency f 

o r  Shannon's sampling theorem ( re f .  4), 

The l a rge r  the  sampling in t e rva l ,  the  smaller the  

i n  the  t i m e  h i s t o r y  by Nyquist's c r i t e r i o n  
U 

7 
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However, i n  p r a c t i c a l  appl ica t ion ,  the maximum sampling i n t e r v a l  w i l l  be one 

ha l f  of the above value. Thus, using the maximum sampling in t e rva l ,  equation 

(9) becomes 

-1 
Ed = fu 5x,* (y) 

NS 
9 

which i s  the  minimum percentage e r r o r  possible.  

dxs ( t )  
I n  the  above expression, the value of the  der iva t ive  dt 

Thus, the above e r r o r  expression is use- 

i s  a funct ion 

of t i m e  and may range from -m t o  340. 

less unless some kind of average is  taken over the value of the  der ivat ive.  

Such an averaging may be accomplished as follows: 

The t i m e  h i s t o r y  x,(t) can be expressed by a Fourier  series expansion. 

Consider Fourier s i n e  (or cosine) components of x (t) a t  frequency f ,  i.e., 
S 

x s ( t , f )  = s i n ( 2 1 ~  f t )  (12) 

The t i m e  der iva t ive  of t h i s  component is  

dxs (t , f )  
= 2 f cos(2Tr f t )  d t  

The average of the  absolute value of the der iva t ive  over the  e n t i r e  t i m e  h i s t o r y  

is  equal t o  

1 
_. - 

scale u n i t  
t i m e  u n i t  

4f 
= A  1 2 f cos(2 f t )  d t  = 4f 

0 
1 

4f 
- 

8 



NQRTHRQP PR-504E 
HUNTSVILLE 

Thus, an "average" quant iza t ion  e r r o r  of the  de r iva t ive  of the  Four ie r  series 

component a t  frequency f is given by 

The above estimate of quant iza t ion  e r r o r  is  v a l i d  f o r  a p a r t i c u l a r  frequency 

component only. Hence, the  next l o g i c a l  s t e p  is  t o  obta in  an  estimate of e r r o r  

averaged over the  frequency range of the  t i m e  h i s t o r y  of i n t e r e s t .  

I f  the  t i m e  h i s t o r y  is  a bandwidth-limited whi te  no ise ,  then the  "average" 

quant iza t ion  e r r o r  f o r  the  f i r s t  de r iva t ives  of s i g n a l s  over the  frequency 

range i s  
c 

f U  Ox,* 
'fu - fl> NS E =  Ed(f) df = 

Actually,  the  power spectrum funct ion of atmospheric, turbulent-wind 

f luc tua t ions  c lose ly  follows a minus f ive- th i rds  power l a w  i n  the  frequency 

range of i n t e r e s t  f o r  crossed-beam da ta .  

funct ion i n t o  considerat ion,  then a more realist ic and accura te  average 

quant izat ion e r r o r  of t he  f i r s t  de r iva t ive  of atmospheric da t a  would be 

I f  one takes  t h i s  a c t u a l  power spectrum 

112 Ifu (f-513) Ed(f) df 
f ,  

df 

-516 -f -516 
2a X " f U  k > / 6  - ,>I6 

NS 

9 
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The reason f o r  using t h e  "square root" of t he  power spectrum funct ion as a 

weighting f a c t o r  i n s t ead  of t h e  power spectrum funct ion i t s e l f  i s  due t o  t h e  

f a c t  t h a t  t h e  power spectrum i s  proportional t o  t h e  mean "square" va lue  of 

t h e  t i m e  h i s to ry .  

Equations (15) and (16) i n d i c a t e  t h a t  the mean quant izat ion e r r o r  of the 

f i r s t  de r iva t ive  of t h e  t i m e  h i s t o r y  i s  r e l a t e d  t o  t h e  upper and lower cutoff  

frequencies,  t h e  r m s  va lue  of t h e  quant izat ion e r r o r  of s i g n a l s ,  t he  power 

spectrum funct ion of the t i m e  h i s t o r y ,  and the t o t a l  number of scale u n i t s  

i n  t h e  d i g i t a l  converter.  

cording t o  the  expected spectrum funct ion of s i g n a l s ,  and can be regarded as 

known parameters. The t h i r d  parameter, a is  already given by equation ( 3 ) .  

The f i r s t  two parameters, f and f ly  are set ac- 
U 

x,q '  - - 
Hence, i f  one assigns a desired t o l e r a b l e  percentage e r r o r  f o r  E Or d,atm 
then equation (16) o r  equation (15) can be used t o  estimate a minimum t o t a l  

number of scale u n i t s ,  (NS) . A required minimum number of b i t s  f o r  quanti- 

z a t i o n  of t h e  t i m e  h i s t o r y ,  Nb, could i n  tu rn  be determined by the  u s e  of (NS) 

by the following r e l a t i o n  

min 

min 

It should be noted t h a t  i n  the  above ana lys i s  t h e  t i m e  h i s t o r y  x ( t )  i s  assumed 

t o  be pure s i g n a l  without any no i se ,  o t h e r  than t h a t  due t o  quantization. 

Therefore, equation (16) cannot be appl ied without some modifications t o  

crossed-beam data where the  noise-to-signal r a t i o  i s  q u i t e  high. The parameter 

i n  equation (16) which needs t o  be modified is  N 

by t h e  r a t i o  of t h e  square r o o t  of t h e  peak cross-correlat ion of t i m e  h i s t o r i e s  

x ( t )  and y ( t ) ,  max(R ), t o  t he  t o t a l  range of quant izat ion,  Ax. This may b e  

w r i t t e n  as 

which should b e  scaled down 
S'  

XY 

. 10 
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where 0 and CI are r m s  values  o f  t he  t i m e  h i s t o r i e s  x ( t )  and y ( t ) ,  respec t ive ly .  

Subs t i t u t ing  t h e  modified &I 
X Y 

fo r  the  o r i g i n a l  one i n  equation (16) y i e lds  s 

The above equatfon could now be used t o  determine the  minimuin total nutaber 

of scale u n i t s  (N ) , for atmospheric crossed-beam da ta .  
min 

Example 

The upper and lower cutoff  f requencies  are set t o  be 

f = 4 cps 
U 

and 

f l  = 0.01 cps ,  

The r a t i o  

assuming 

system. 

f o r  t he  a 

0 = 0 . This r a t i o  is 

Assuine t h i s  r a t i o  has a 
.tmospherie crossed-beam 

X Y  
usual ly  c a l l e d  t h e  dynamic range of a record in  

va lue  of fou r  (convervative) . me ratioJ* max (Rxy) 
data  is  usua l ly  no less than 5,  ( r e f .  1). - 

Fina l ly ,  l e t  t h e  average quant izat ion efror 
Subs t i t u t ing  the  above numerical values  i n t o  equation (19) and so lv ing  f o r  N 

one obta ins  the  required minimum t o t a l  number of s c a l e  u n i t s  as follows: 

be less than 10 percknt.  d,atm 

S' 

-516 -4 -5 16 
l- = 2450 0.01 *JT* 4 4 ( 1/6) 

- 2 0.29 - 
(NS)min 5 0.1 ( 4 l l 6  - 0.01 

By use of equation (17) and the  above estimated (NS)min one f i n d s  t h a t  t he  

minimum required number of b i t s  of quant iza t ion  i s  

11 
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Sect ion 111 

REDUCTION OF QUANTIZATION ERROR BY THE 
SAMPLE REDUCTION METHOD 

Sect ion I1 has shown t h a t  quant iza t ion  e r r o r s  are always assoc ia ted  with 

d i g i t a l  t i m e  h i s t o r i e s .  The e r r o r s  are d i r e c t l y  proport ional  t o  the  s i z e  of 

s c a l e  u n i t  used, o r  inverse ly  proport ional  t o  the  t o t a l  number of s c a l e  u n i t s  

i n  the  d i g i t a l  converter.  Since any d i g i t a l  converter  has a maximum number 

of s c a l e  un i t s ,  the  minimum quant iza t ion  e r r o r  is  f ixed f o r  any d i g i t a l  

converter .  

In  t h i s  s e c t i o n  w e  s h a l l  develop a theory t o  f u r t h e r  reduce t h i s  minimum 

quant izat ion e r r o r  by means of the  sample reduct ion method. 

Consider an  analog t i m e  h i s to ry  of a random process x ( t ) ,  and l e t  f and 1 
f be the  lower and upper frequencies of i n t e r e s t ,  respec t ive ly .  The usual  

sampling c r i t e r i o n ,  such as Nyquist 's  c r i t e r i a  ( r e f .  4 ) ,  depends on the  upper 

frequency of the  t i m e  h i s tory .  The same considerati'on w i l l  be  followed here ,  

and f o r  t he  t i m e  being w e  s h a l l  concentrate  a t t e n t i o n  on the  upper frequency 

component of x ( t )  only. 

i n  the  ana lys i s ,  the  whole spectrum dens i ty  funct ion of x ( t )  w i l l  be taken 

i n t o  considerat ion.  Spec i f i ca l ly ,  x ( t ,  f ) may be expressed by a s i n e  wave 

with frequency f as 

U 

This component w i l l  be denoted by x ( t ,  fu ) .  Later 

U 

U 

The t i m e  de r iva t ive  of t h i s  component w i l l  f l u c t u a t e  between -1 and +l. 

Since i t  i s  the  absolute  va lue  of t h e  de r iva t ive  which a f f e c t s  quant izat ion 

e r r o r s ,  and s i n c e  the re  i s  i n t e r e s t  only i n  the  average e f f e c t  of quantiza- 

t i o n  e r r o r s  i n  the  evaluat ion of t i m e  de r iva t ives ,  we s h a l l  rep lace  x ( t ,  

by an equivalent  s t r a i g h t  l i n e ,  x ( t ,  f ); t he  s lope  of which i s  equal t o  the  

average of the  absolu te  value of the  t i m e  de r iva t ives  of x ( t ,  f u ) .  

- 
fU) - 

U 
That is  

1 2  
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where the  over bar stands f o r  temporal average. Now evalua te  

Hence, 

x ( t ,  fu) = 4 f U  t 

A segment of t h i s  l i n e  is  p lo t t ed ,  i n  Figure 3-1, over a t i m e  i n t e r v a l  t h a t  

w i l l  be regarded as the  analog t i m e  h i s to ry  of i n t e r e s t .  W e  w i l l  now convert 

t he  continuous G( t ,  f ) i n t o  d i g i t a l  samples  and then show how t h e  sample re- 

duction method may reduce quant izat ion e r ro r s  involved. 
U 

Consider taking a d i g i t a l  sample a t  t i m e  t (see Figure 3-1). The exact 

value of x ( t ,  f ) i s  indicated by Point A on the  s t r a i g h t  l i n e .  

j-1, j ,  j+l, etc., are the  prefixed d i g i t a l  s c a l e  u n i t  marks. For convenience 

of d i scuss ion  the  mid-point mark between two consecui t ive scale u n i t s  are 

indicated as j -1 /2 ,  j+1/2 ,  etc. 

mark j + l / 2  and j s c a l e  u n i t ,  i t s  va lue  w i l l  be  recorded i n  d i g i t a l  form as 

j scale un i t s .  The quant izat ion e r r o r  due t o  the  f i n i t e  s i z e  of scale u n i t  

i s  then given by the  f r a c t i o n  of a s c a l e  u n i t ,  i . e . ,  A I / I J .  

I n  t h i s  f igure ,  
U 

Since Point A is shown between the  mid-point 

-- 

-- 
To apply the  sample reduction method t o  reduce the  e r r o r  A I / I J ,  more 

d i g i t a l  samples i n  the  v i c i n i t y  of the  sampling t i m e  t are needed. Denote 

the  points  of i n t e r sec t ion  between y ( t ,  fu)  , j ,  j+1/2, and j+l, respec t ive ly ,  

by C ,  F, and B. Also denote the  points  E and D on each s i d e  of Point A along 

x ( t ,  f ) a t  a d i s t ance  from Point  A. Fina l ly ,  denote the  point  G on 

x ( t ,  f u )  such t h a t  E = E. 

- 
U - 

The t i m e s  corresponding t o  poin ts  A t o  G are 

13 
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spec i f i ed  i n  Figure 3-1. 

f o r  applying t h e  sample reduction can not' exceed the l a r g e s t  permissible sampling 

i n t e r v a l  (At )max ,  which, i n  tu rn ,  i s  determined by t h e  upper frequency f through 

the  following r e l a t ionsh ip .  

Mote f i r s t  t h a t  the l a r g e s t  t i m e  i n t e r v a l  around t 

U 

1 
( A t >  = - max f U  (25) 

Before proving t h a t  ( A t )  

sample reduction, observe from Figure 3-1 how a shor t e r  t i m e  i n t e r v a l  than 

(At) may r e s u l t .  Suppose many d i g i t a l  samples between t and t " are 

taken. 

j and j+1/2,  they w i l l  a l l  be recorded as j scale un i t s .  

of the  sample reduction method over the  i n t e r v a l  between t I' and t 

does no t  reduce quant izat ion e r r o r s .  This observation serves t o  i n d i c a t e  t h a t  

t he  t i m e  i n t e r v a l  f o r  applying t h e  sample reduction can no t  be too s m a l l  e i t h e r .  

i s  a l s o  the  only s u i t a b l e  time i n t e r v a l  to apply max 

max 1 2 
Since exact values  of a l l  these samples i n  analog form l i e  between 

Thus, app l i ca t ion  

1 2 apparently 

We s h a l l  now show t h a t  the  sample reduction method appl ied over t h e  t i m e  

t2 - t i n t e r v a l  A t  = 

Point A ,  i .e . ,  x(t, fu) .  

w i l l  y i e ld  a cons i s t en t  estimate of t he  exact  value of 1 
Referring t o  Figure 3-1, we have, by de f in i t i on ,  

A t  = t2 - tl = t2' - tll 
and 

1 
1 2 = t2 - t = - A t .  t - t  

Since the  s lope of X( t ,  f ) i s  4 f ( see  equation ( 2 3 ) ) ,  
U U 

- - -  
l - 4 f  U 

j+l)  - j. 
A t  t an  0 = ( t*r - tl' - 

o r  

15 
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This last equation simply states that the  t i m e  i n t e r v a l  we  intend t o  use f o r  

applying the  sample reduction happens t o  be the maximum permissible  sampling 

i n t e r v a l .  

Spec i f i ca l ly ,  these  samples are taken a t  t i m e s  

Next, t ake  (2m+l) equal ly  spaced d i g i t a l  samples  between tl and t2. 

= t i- (i-m-1) 
ti 2m 

where i = 1, 2 ,  ..., 2m, 2m+l. C lear ly ,  every d i g i t a l  sample w-thin the  i n t e r v a l  

t c t On the  o ther  hand, every 

sample wi th in  the  i n t e r v a l  t2" c t - i -  2 
un i t s .  

denoted by ;( t , fu, m), w i l l  be given by 

< t2" w i l l  be recorded as having j scale un i t s .  

Therefore,  the  estimated value of x ( t ,  f ) by the  sample reduct ion method, 

1 -  i -  
c t w i l l  be recorded as having j+l scale 

U 

k ( t ,  f u ,  m) = - 2m+l 1 ! ~ n t  fii '1) + j 

f I I n t  t 2  - i:i) + ~ (j+l]  scale u n i t s ,  

2m 

where the  symbol I n t  ( ) i s  employed t o  i n d i c a t e  t h a t  only rhe in t ege r  p a r t  of 

t h e  number wi th in  parentheses has been used. A s  the  number of d i g i t a l  samples 

taken i n  the  i n t e r v a l  ( t , ,  t , )  becomes i n f i n i t e l y  l a r g e ,  i .e. ,  (2m+l)+ , the  

where i = 1, 2 ,  ..., 2m, 2m+l. C lear ly ,  every d i g i t a l  sample w-thin the  i n t e r v a l  

t c t On the  o ther  hand, every 

sample wi th in  the  i n t e r v a l  t2" c t - i -  2 
un i t s .  

denoted by ;( t , fu, m), w i l l  be given by 

< t2" w i l l  be recorded as having j scale un i t s .  

Therefore,  the  estimated value of x ( t ,  f ) by the  sample reduct ion method, 

1 -  i -  
c t w i l l  be recorded as having j+l scale 

U 

k ( t ,  f u ,  m) = - 2m+l 1 ! ~ n t  fii '1) + j 

f I I n t  t 2  - i:i) + ~ (j+l]  scale u n i t s ,  

2m 

where the  symbol I n t  ( ) i s  employed t o  i n d i c a t e  t h a t  only rhe in t ege r  p a r t  of 

t h e  number wi th in  parentheses has been used. A s  the  number of d i g i t a l  samples 

taken i n  the  i n t e r v a l  ( t , ,  t , )  becomes i n f i n i t e l y  l a r g e ,  i .e. ,  (2m+l)+ , the  
J . L  

r a t i o  between these two terms F. 
2m 9 + 

approaches asymptot ical ly  the  r a t i o  between the  two d is tances ,  

as m-m, equation (29) can be wr i t t en  as 

and E. Thus 

h 1 -  - 
x ( t ,  fU, m-.-) = = [FE j + FD ( j + l ) ~  scale u n i t s  ED 

16 
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Since, by d e f i n i t i o n ,  

- - - -  
AD = AE = FB = FC, 

w e  have 
- - -  
FE = AB, FD f= E, and ED = E. 

Subs t i t u t ing  equations (32) i n t o  (30) y i e l d s  

n - 
x ( t ,  fU, m a )  = = I. [AB j + AC (j+1)1 scale u n i t s .  

BC 

On t h e  dthemr hand, t h e  exact value of t he  analog t i m e  h i s t o r y  a t  t i m e  t ,  

x ( t ,  f ) ,  can also be expressed i n  terms of f r a c t i o n  of scale u n i t s  as 
- 

u 

-~ 

AC 
BC 

- 
x ( t ,  fu) = j +’= [(j+l)  - j l  

- 
= (. - z )  j + AC (j+l) 

BC 

1 -  
= - - [AB j + E (j+l) 1 scale u n i t s  
BC 

Comparing equations (33) and (34) then shows t h a t  

(33) 

( 3 4 )  

This means that i f  w e  apply t h e  sample reduction method by taking an i n f i n i t e l y  

l a r g e  number of equal ly  spaced d i g i t a l  samples over a t i m e  i n t e r v a l  t o  1 / ( 4  f ), 

then the  quant izat ion e r r o r  may be reduced as desired.  

nology, t h e  est imator  (defined by equation (29)) is  then s a i d  t o  be consis tent .  

U 

I n  s ta t is t ical  termi- 

17 



WTWROP PR-504F 
HUNTSVILLE 

Next, w e  w i l l  show that the  t i m e  i n t e r v a l  1 / (4  fu)  used i n  the  above ana lys i s  

is a l s o  the only one t h a t  w i l l  y i e l d  a cons is ten t  estimate of x(t, fu )  . 
observed t h a t  applying the  sample reduction method does not  reduce any quant izat ion 

e r r o r  i f  the  t i m e  i n t e r v a l  A t  = (tl", t 'I)  is used. 

l a rge r  t i m e  i n t e r v a l ,  i.e., 

i n t e r v a l  within t h i s  range as 

W e  have 

It remains now t o  consider a 2 
I' - t ' I )  < A t  5 ( A t ) m x .  L e t  us express the  t i m e  (t2 1 

( 3 6 )  
2 A t  (At)max - 2 A t ,  

2 1  where 0 < A t < ;; ( t ,  - t2" ) .  Using equation ( 3 6 ) ,  one obta ins  
L L  

n - 
x ( t ,  f U ,  m-) = 

-1 where 8 = t an  ( 4  fu ) .  

1 
2 BC - 2 A t csc 8 

- 

2 (AC - A t csc 0 )  
_. 

1 
2 BC - 2 A t csc 0 

- 

2 [(AB - A t c sc  9) j 

AB j + AC ( j+ l )  - (2j+1) A 2 t csc e {- 
x<t, f i n  general  

U 

(37) only when x ( t ,  fu) = j + - 1 , at, fu> 2 

The above equation shows t h a t  no matter how l a rge  m 

may be, the  estimated value by the  sample reduction method, i n  general ,  never 

approaches the  exact  va lue  F ( t ,  fu )  when A t # 0. 

t o  see t h a t  the estimated value Z(t, 

o r i g i n a l  d i g i t a l  sample a t  t i m e  t even fo r  A t  < (At) 

2 Nevertheless,  i t  i s  important 

m) w i l l  be no less accurate  than t h e  
f U ,  

max 

In  actual  appl ica t ions ,  t h e  number of d i g i t a l  samples (2m+l), taken over 

( A t  1 max Y w i l l  always be f i n i t e ,  so  quant izat ion e r r o r s  can be reduced only 

18 
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p a r t i a l l y  by the  sample reduction method. 

much quant iza t ion  error is  el iminated by the est imator  (equation (29)) f o r  a 

given m using A t  = (At)max. As a matter of f a c t ,  the  only e r r o r  involved in the 

est imator  when compared to  the  exact value of x ( t ,  f ) is due t o  t runca t ion  of 

decimal p a r t s  by the  in t ege r  operator  I n t  ( ). The maximum uncer ta in ty  (Ax) 

i n  equation (29) can be found f o r  the  s i m p l e s t  case  by s e t t i n g  j = O ,  i.e., 

We would l i k e  t o  estimate next how 

i 

n - U 

m a x  

n - 
x ( t ,  f u ,  m) = - 2m+l 

2m 

s i n c e  the  value of j is immaterial. Thus, 

(39) = -  I sca le  u n i t  , 
2m+l 

while the  r m s  quant izat ion e r r o r  in the  o r i g i n a l  d i g i t a l  sample is 1/ fi 
scale u n i t  (equation ( 3 ) ) .  Hence, t he  minimum percentage of reduct ion of 

quant iza t ion  e r r o r s  by the  sample reduction method using (2m+l) equal ly  
I spaced d i g i t a l  samples with A t  = - is  given by 

( - +\. 100% = (1 - -) J12 x 100% 
E. min (m, fu> = - 2m+l 

Actually,  a more accura te  estimate of the  amount of quant iza t ion  e r r o r  reduct ion 

by the  sample reduct ion method can be made by assuming t h a t  t h e  p robab i l i t y  dens i ty  

of Point A is  uniform between two consecutive scale u n i t s .  With t h i s  assumption, 

which i s  indeed q u i t e  realist ic,  the  rms value  of t runca t ion  i n  equation (29), 

19 
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w i l l  be equal t o  1/6 ins tead  of 1 as shown i n  equation (39) .  

percentage of reduction of quant izat ion e r r o r s  by t h e  sample reduction method, 

denoted by F(m, f;), w i l l  be 

So the  "average" 

1 

x 100% = 2m-1 x 100% . - 
2m+l ~ ( m ,  fk) = 

It should be reca l led  t h a t  so  f a r  a l l  t h e  estimates w e r e  derived based only 

on the  upper frequency component of t h e  a c t u a l  analog t i m e  h i s to ry .  

w e  need t o  take i n t o  cons idera t ion  the  power spectral dens i ty  funct ion S ( f )  of 

x ( t )  as a weighting funct ion.  The co r rec t  amount of weighting required f o r  

equaticz (41) may be derived as follows. Without loss of genera l i ty ,  l e t  us 

regard the  t i m e  h i s t o r y  x ( t )  as having N d i s c r e t e  frequency components, i.e., 

Therefore,  

with 

x i ( t )  = ai s i n ( 2  f i  t + 4i), f 5 f i  2 fi+l - < f  

where +i is the  random phase s h i f t  assoc ia ted  with ith frequency component. 

The corresponding power spectrum dens i ty  is  given by 

where 6 ( f )  is  Dirac's d e l t a  funct ion.  Recall t h a t  i t  is the  average of the  

absolu te  va lue  of t he  s lope  of each frequency component that w i l l  a f f e c t  t h e  

app l i ca t ion  of t he  sample  reduction method. Hence, consider the  average 

20 
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Furthermore, from equation ( 4 3 ) ,  we see that 

' af fi + 2 

fi - 2 I Af 

1 2  
2 i  S(f) df = - a  

which implies that a = c S(f.); c being some constant. Thus, equation ( 4 4 )  i J l  
becomes 

- 
Therefore, the suitable weighting function should be f iS(f). 
percentage of "overall" reduction of quantization errors F(m) in the original 
analog time history x(t) using the sample reduction method (using 2m+l samples 

over At = 114 f ) will be given by 

The "average" 

U 

x 100% - '1 - 
s ( m )  = 

ffu - 
fU J, 3 S(f) df 

1 

Jfu f J S 0  df 
x 100% - 2m-1 fl - -  

U 

I n  

fl 

particular, for a bandwidth-limited white noise; i.e., S(f) = constant for 

- -  < f < fu; equation (22) reduces to 

21 
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\ 

- 
6(m) = 2m-1 2m+l (3. + 3 x 50% 

For a t i m e  h i s to ry  with a spectrum of the  form S(f) = constant x f -2 , 
equation (42) becomes 

2m-1 
2m+$ 
- 00% 

(47) 

F ina l ly ,  f o r  a spectrum with extremely narrow bandwidth equation (42) reduces 

t o  approximately 

as would be expected by considering equation (21). 

Numerical examples: For fu/fl  = 10, w e  have from equation ( 4 8 )  

- 
~ ( m )  = 21% for  m = 5 

= 23% fo r  m + a; 

for  fu / f  = 5, w e  have 

c(m) = 32.8% f o r  m = 5 

= 36% fo r  m 3 -. 
These examples serve t o  show t h a t  l i t t l e  bene f i t  can be obtained f o r  m > 5. 

Therefore, f o r  practical app l i ca t ions ,  we  need only sample about t en  t i m e s  

higher than normally required ( i . e . ,  40 f u  samples/sec) t o  use t h e  sample 

reduction method. 

i 

It is i n t e r e s t i n g  t o  compare t h e  e f f i c i ency  of t he  sample reduct ion method 

with t h a t  of increasing d i g i t a l  b i t s  t o  reduce quant izat ion e r ro r s .  For an 
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increase of two d i g i t a l  b i t s ,  a scale u n i t  is  reduced i n  s i z e  to one-fourth. 

Hence, t h e  quant izat ion e r r o r  w i l l  be reduced by (1 - 1/4) o r  75 percent,  

regard less  of t he  spectrum funct ion of  t he  analog t i m e  h i s tory .  

e f f i c i ency  with.32.8 percent from equation (51), t he  method of increasing d i g i t a l  

b i t s  is more e f f e c t i v e  than the  sample reductdon method. 

reduction method is not  intended t o  replace any poss ib le  increase of quant izat ion 

b i t s ,  but r a t h e r  devised f o r  f u r t h e r  reduction of quant izat ion b i t s ,  but  r a t h e r  

devised f o r  fu r the r  reduct ion of quant izat ion e r ro r s  when the  highest  poss ib le  

number of d i g i t a l  b i t s  of a given d i g i t i z e r  i s  used. 

Comparing t h i s  

However, t he  sample 
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Sect ion I V  

CONCLUSIONS AM> RECOMMENDATIONS 

An estimate of the  average quant iza t ion  e r r o r  of t he  f i r s t  de r iva t ive  of 

t h e  t i m e  h i s t o r y  has been derived. This estimate of e r r o r  is  f u r t h e r  spec i f i ed  

f o r  atmospheric crossed-beam d a t a .  

za t ion  of t h e  atmospheric crossed-beam da ta  might be necessary i n  order  t o  

obta in  an average quant iza t ion  error of t h e  f i r s t  de r iva t ive  of t h e  crossed- 

beam da ta  below 10 percent.  

The ana lys i s  i nd ica t e s  t h a t  12-bi t  quanti-  

A theory has been developed on the  appl ica t ion  of t he  sample reduct ion 

method t o  reduce quant iza t ion  e r r o r s  r e s u l t i n g  from d i g i t i z a t i o n  of  random 

t i m e  h i s t o r i e s .  Quantization e r r o r s  occur because of the  f i n i t e  s i z e  of scale 

u n i t s  used’. 

This ana lys i s  shows t h a t  the  sample reduct ion method w i l l  g ive  a statis- 

t i c a l l y  cons i s t en t  estimate of the  exact  value of t h e  assoc ia ted  analog t i m e  

h i s t o r y  i f  t h e  t i m e  h i s to ry  i s  of a s i n g l e  frequency f and i f  t h e  t i m e  i n t e r v a l  

used f o r  averaging of d i g i t a l  samples is set t o  be 1/(4 f ) .  For a t i m e  h i s t o r y  

with a spectrum dens i ty  S ( f )  within the  frequency range from f t o  f u  and 

using (2m-i-1) equal ly  spaced d i g i t a l  samples taken over a t i m e  i n t e r v a l  of 

1 /4  fu ,  t he  average percentage of o v e r a l l  reduct ion i n  quant iza t ion  e r r o r s  

by the  sample  reduct ion method i s  given by equation ( 4 6 ) .  

1 

From the  above estimate, i t  is  suggested fo r  actual appl ica t ions  of the  

sample reduct ion method t h a t  the  analog t i m e  h i s t o r y  of i n t e r e s t  should be  

d i g i t i z e d  a t  a sampling i n t e r v a l  of 1/40 f 

ten,  consecutive,  d i g i t a l  samples. By doing so, an approximate 30 percent 

reduct ion i n  quant iza t ion  e r r o r s  may be expected f o r  t he  commonly encountered 

spectrum dens i ty  of the  form f 

and then averaged over every 
U 

-2 . 
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Section V 
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